Oncolytic adenoviruses synergistically enhance anti-PD-L1 and anti-CTLA-4 immunotherapy by modulating the tumour microenvironment in a 4T1 orthotopic mouse model

在4T1原位小鼠模型中,溶瘤腺病毒通过调节肿瘤微环境,协同增强抗PD-L1和抗CTLA-4免疫疗法的疗效。

阅读:1
作者:Huan Zhang ,Weimin Xie ,Yuning Zhang ,Xiwen Dong ,Chao Liu ,Jing Yi ,Shun Zhang ,Chunkai Wen ,Li Zheng ,Hua Wang

Abstract

Effective therapeutic strategies for triple-negative breast cancer (TNBC) are still lacking. Clinical data suggest that a large number of TNBC patients cannot benefit from single immune checkpoint inhibitor (ICI) treatment due to the immunosuppressive tumour microenvironment (TME). Therefore, combination immunotherapy is an alternative approach to overcome this limitation. In this article, we combined two kinds of oncolytic adenoviruses with ICIs to treat TNBC in an orthotopic mouse model. Histopathological analysis and immunohistochemistry as well as multiplex immunofluorescence were used to analyse the TME. The immunophenotype of the peripheral blood and spleen was detected by using flow cytometry. Oncolytic adenovirus-mediated immune activity in a coculture system of lytic supernatant and splenocytes supported the study of the mechanism of combination therapy in vitro. Our results showed that the combination of oncolytic adenoviruses with anti-programmed cell death-ligand 1 (anti-PD-L1) and anti-cytotoxic T lymphocyte-associated antigen-4 (anti-CTLA-4) (aPC) can significantly inhibit tumour growth and prolong survival in a TNBC model. The combination therapy synergistically enhanced the antitumour effect by recruiting CD8+ T and T memory cells, reducing the number of regulatory T cells and tumour-associated macrophages, and promoting the polarization of macrophages from the M2 to the M1 phenotype to regulate the TME. The rAd.GM regimen performed better than the rAd.Null treatment. Furthermore, aPC efficiently blocked oncolytic virus-induced upregulation of PD-L1 and CTLA-4. These findings indicate that oncolytic adenoviruses can reprogramme the immunosuppressive TME, while ICIs can prevent immune escape after oncolytic virus therapy by reducing the expression of immune checkpoint molecules. Our results provide a mutually reinforcing strategy for clinical combination immunotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。