Conductive Carbon Microfibers Derived from Wet-Spun Lignin/Nanocellulose Hydrogels

源自湿纺木质素/纳米纤维素水凝胶的导电碳微纤维

阅读:10
作者:Ling Wang, Mariko Ago, Maryam Borghei, Amal Ishaq, Anastassios C Papageorgiou, Meri Lundahl, Orlando J Rojas

Abstract

We introduce an eco-friendly process to dramatically simplify carbon microfiber fabrication from biobased materials. The microfibers are first produced by wet-spinning in aqueous calcium chloride solution, which provides rapid coagulation of the hydrogel precursors comprising wood-derived lignin and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (TOCNF). The thermomechanical performance of the obtained lignin/TOCNF filaments is investigated as a function of cellulose nanofibril orientation (wide angle X-ray scattering (WAXS)), morphology (scanning electron microscopy (SEM)), and density. Following direct carbonization of the filaments at 900 °C, carbon microfibers (CMFs) are obtained with remarkably high yield, up to 41%, at lignin loadings of 70 wt % in the precursor microfibers (compared to 23% yield for those produced in the absence of lignin). Without any thermal stabilization or graphitization steps, the morphology, strength, and flexibility of the CMFs are retained to a large degree compared to those of the respective precursors. The electrical conductivity of the CMFs reach values as high as 103 S cm-1, making them suitable for microelectrodes, fiber-shaped supercapacitors, and wearable electronics. Overall, the cellulose nanofibrils act as structural elements for fast, inexpensive, and environmentally sound wet-spinning while lignin endows CMFs with high carbon yield and electrical conductivity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。