Downregulation of β-catenin blocks fibrosis via Wnt2 signaling in human keloid fibroblasts

β-catenin 的下调通过 Wnt2 信号阻断人类瘢痕疙瘩成纤维细胞中的纤维化

阅读:8
作者:Yumei Cai, Shize Zhu, Weiqun Yang, Mingmeng Pan, Chaoyang Wang, Wenyi Wu

Abstract

Keloid is a disorder of fibroproliferative diseases that occurs in wounds, characterized by an exaggerated response to injury. The key factor responsible for the disease process has not been identified. This study sought to elucidate the role of β-catenin in the regulation of keloid phenotypes and signaling. Expression of β-catenin in keloid and normal non-keloid samples was measured by real-time polymerase chain reaction. Knockdown of β-catenin was achieved by delivering small interfering RNA to target β-catenin. Cell proliferation, cell cycle progression, and apoptosis of keloid cells were measured by functional assays in vitro. The proteins related to keloid fibrosis were measured by Western blotting. β-catenin expression was significantly upregulated in keloid tissue samples compared with the normal non-keloid age-adjusted skin sample counterparts. Functionally, targeting β-catenin with lipofection-delivered small interfering RNA oligonucleotide inhibited the proliferation and cell cycle arrest in G0/G1 phase and increased apoptosis of fibroblast cells, accompanied by downregulation of Wnt2 and cyclin D1 as well as the phosphorylation level of glycogen synthase kinase 3 beta in the keloid fibrosis. Our study supports a crucial role of β-catenin in the regulation of fibroproliferation and extracellular matrix deposition. Targeting β-catenin using small interfering RNA oligonucleotide may be a promising approach for preventing excessive fibroproliferative development after wound healing and may lead to the development of novel strategies for restoring keloid diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。