Hyaluronan synthase-2 upregulation protects smpd3-deficient fibroblasts against cell death induced by nutrient deprivation, but not against apoptosis evoked by oxidized LDL

透明质酸合酶 2 上调可保护 smpd3 缺乏的成纤维细胞免于营养缺乏引起的细胞死亡,但不能防止氧化 LDL 引起的细胞凋亡

阅读:5
作者:Sandra Garoby-Salom, Myriam Rouahi, Elodie Mucher, Nathalie Auge, Robert Salvayre, Anne Negre-Salvayre

Abstract

The neutral type 2 sphingomyelinase (nSMase2) hydrolyzes sphingomyelin and generates ceramide, a major bioactive sphingolipid mediator, involved in growth arrest and apoptosis. The role of nSMase2 in apoptosis is debated, and apparently contradictory results have been observed on fibroblasts isolated from nSMase2-deficient fragilitas ossium (homozygous fro/fro) mice. These mice exhibit a severe neonatal dysplasia, a lack of long bone mineralization and delayed apoptosis patterns of hypertrophic chondrocytes in the growth plate. We hypothesized that apoptosis induced by nutrient deprivation, which mimics the environmental modifications of the growth plate, requires nSMase2 activation. In this study, we have compared the resistance of fro/fro fibroblasts to different death inducers (oxidized LDL, hydrogen peroxide and nutrient starvation). The data show that nSMase2-deficient fro/fro cells resist to apoptosis evoked by nutrient starvation (fetal calf serum/glucose/pyruvate-free DMEM), whereas wt fibroblasts die after 48h incubation in this medium. In contrast, oxidized LDL and hydrogen peroxide are similarly toxic to fro/fro and wt fibroblasts, indicating that nSMase2 is not involved in the mechanism of toxicity evoked by these agents. Interestingly, wt fibroblasts treated with the SMase inhibitor GW4869 were more resistant to starvation-induced apoptosis. The resistance of fro/fro cells to starvation-induced apoptosis is associated with an increased expression of hyaluronan synthase 2 (HAS2) mRNAs and protein, which is inhibited by ceramide. In wt fibroblasts, this HAS2 rise and its protective effect did not occur, but exogenously added HA exhibited a protective effect against starvation-induced apoptosis. The protective mechanism of HAS2 involves an increased expression of the heat-shock protein Hsp72, a chaperone with antiapoptotic activity. Taken together, these results highlight the role of nSMase2 in apoptosis evoked by nutrient starvation that could contribute to the delayed apoptosis of hypertrophic chondrocytes in the growth plate, and emphasize the antiapoptotic properties of HAS2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。