Loss of β2-laminin alters calcium sensitivity and voltage-gated calcium channel maturation of neurotransmission at the neuromuscular junction

β2-层粘连蛋白的缺失会改变神经肌肉接头处神经传递的钙敏感性和电压门控钙通道成熟

阅读:9
作者:Kirat K Chand, Kah Meng Lee, Mitja P Schenning, Nickolas A Lavidis, Peter G Noakes

Abstract

Neuromuscular junctions from β2-laminin-deficient mice exhibit lower levels of calcium sensitivity. Loss of β2-laminin leads to a failure in switching from N- to P/Q-type voltage-gated calcium channel (VGCC)-mediated transmitter release that normally occurs with neuromuscular junction maturation. The motor nerve terminals from β2-laminin-deficient mice fail to up-regulate the expression of P/Q-type VGCCs clusters and down-regulate N-type VGCCs clusters, as they mature. There is decreased co-localisation of presynaptic specialisations in β2-laminin-deficient neuromuscular junctions as a consequence of lesser P/Q-type VGCC expression. These findings support the idea that β2-laminin is critical in the organisation and maintenance of active zones at the neuromuscular junction via its interaction with P/Q-type VGCCs, which aid in stabilisation of the synapse. β2-laminin is a key mediator in the differentiation and formation of the skeletal neuromuscular junction. Loss of β2-laminin results in significant structural and functional aberrations such as decreased number of active zones and reduced spontaneous release of transmitter. In vitro β2-laminin has been shown to bind directly to the pore forming subunit of P/Q-type voltage-gated calcium channels (VGCCs). Neurotransmission is initially mediated by N-type VGCCs, but by postnatal day 18 switches to P/Q-type VGCC dominance. The present study investigated the changes in neurotransmission during the switch from N- to P/Q-type VGCC-mediated transmitter release at β2-laminin-deficient junctions. Analysis of the relationship between quantal content and extracellular calcium concentrations demonstrated a decrease in the calcium sensitivity, but no change in calcium dependence at β2-laminin-deficient junctions. Electrophysiological studies on VGCC sub-types involved in transmitter release indicate N-type VGCCs remain the primary mediator of transmitter release at matured β2-laminin-deficient junctions. Immunohistochemical analyses displayed irregularly shaped and immature β2-laminin-deficient neuromuscular junctions when compared to matured wild-type junctions. β2-laminin-deficient junctions also maintained the presence of N-type VGCC clustering within the presynaptic membrane, which supported the functional findings of the present study. We conclude that β2-laminin is a key regulator in development of the NMJ, with its loss resulting in reduced transmitter release due to decreased calcium sensitivity stemming from a failure to switch from N- to P/Q-type VGCC-mediated synaptic transmission.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。