Exosome-Mediated Delivery of Inducible miR-423-5p Enhances Resistance of MRC-5 Cells to Rabies Virus Infection

外泌体介导的可诱导 miR-423-5p 递送增强 MRC-5 细胞对狂犬病毒感染的抵抗力

阅读:9
作者:Jingyu Wang, Yawei Teng, Guanshu Zhao, Fang Li, Ali Hou, Bo Sun, Wei Kong, Feng Gao, Linjun Cai, Chunlai Jiang

Abstract

The human diploid cell line Medical Research Council -5 (MRC-5) is commonly utilized for vaccine development. Although a rabies vaccine developed in cultured MRC-5 cells exists, the poor susceptibility of MRC-5 cells to the rabies virus (RABV) infection limits the potential yield of this vaccine. The underlying mechanism of MRC-5 cell resistance to RABV infection remains unknown. In this study, we demonstrate that viral infection increased exosomal release from MRC-5 cells; conversely, blocking exosome release promoted RABV infection in MRC-5 cells. Additionally, RABV infection up-regulated microRNA (miR)-423-5p expression in exosomes, resulting in feedback inhibition of RABV replication by abrogating the inhibitory effect of suppressor of cytokine signaling 3 (SOCS3) on type I interferon (IFN) signaling. Furthermore, intercellular delivery of miR-423-5p by exosomes inhibited RABV replication in MRC-5 cells. We also show that RABV infection increased IFN-β production in MRC-5 cells and that blocking the type I IFN receptor promoted RABV infection. In conclusion, MRC-5 cells were protected from RABV infection by the intercellular delivery of exosomal miR-423-5p and the up-regulation of IFN-β. These findings reveal novel antiviral mechanisms in MRC-5 cells against RABV infection. miR-423-5p, exosomes, and IFN signaling pathways may therefore be potential targets for improving MRC-5 cell-based rabies vaccine production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。