Bisphenol AF is a full agonist for the estrogen receptor ERalpha but a highly specific antagonist for ERbeta

双酚 AF 是雌激素受体 ERalpha 的完全激动剂,但也是 ERbeta 的高度特异性拮抗剂

阅读:4
作者:Ayami Matsushima, Xiaohui Liu, Hiroyuki Okada, Miki Shimohigashi, Yasuyuki Shimohigashi

Background

Bisphenol AF has been acknowledged to be useful for the production of CF3-containing polymers with improved chemical, thermal, and mechanical properties. Because of the lack of adequate toxicity data, bisphenol AF has been nominated for comprehensive toxicological characterization. Objectives: We aimed to determine the relative preference of bisphenol AF for the human nuclear estrogenic receptors ERalpha and ERbeta and the bisphenol A-specific estrogen-related receptor ERRgamma, and to clarify structural characteristics of receptors that influence bisphenol AF binding.

Conclusion

Our results suggest that bisphenol AF could function as an endocrine-disrupting chemical by acting as an agonist or antagonist to perturb physiological processes mediated through ERalpha and/or ERbeta.

Methods

We examined receptor-binding activities of bisphenol AF relative to [3H]17beta-estradiol (for ERalpha and ERbeta) and [3H]bisphenol A (for ERRgamma). Functional luciferase reporter gene assays were performed to assess receptor activation in HeLa cells.

Results

We found that bisphenol AF strongly and selectively binds to ERs over ERRgamma. Furthermore, bisphenol AF receptor-binding activity was three times stronger for ERbeta [IC50 (median inhibitory concentration) = 18.9 nM] than for ERalpha. When examined using a reporter gene assay, bisphenol AF was a full agonist for ERalpha. In contrast, it was almost completely inactive in stimulating the basal constitutive activity of ERbeta. Surprisingly, bisphenol AF acted as a distinct and strong antagonist against the activity of the endogenous ERbeta agonist 17beta-estradiol.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。