Proteomics analysis reveals the correlation of programmed ROS-autophagy loop and dysregulated G1/S checkpoint with imatinib resistance in chronic myeloid leukemia cells

蛋白质组学分析揭示程序性 ROS-自噬环和失调的 G1/S 检查点与慢性粒细胞白血病细胞伊马替尼耐药性的相关性

阅读:4
作者:Xiucai Xu, Shihong Yin, Yingli Ren, Chaojie Hu, Aimei Zhang, Ya Lin

Abstract

Although tyrosine kinase inhibitors (TKIs), including imatinib, have greatly improved clinical treatment of patients with chronic myeloid leukemia (CML), drug resistance remains a major obstacle. Studies on the mechanisms underlying imatinib resistance and other alternative drugs are urgently needed. Liquid chromatography tandem mass spectrometry was applied to investigate the differences in proteomics and phosphoproteomics between K562 and K562/G (imatinib resistant K562). Multiple bioinformatics analyses were performed to unveil the differential signal pathways. CCK-8 was used to detect cell proliferation. Flow cytometry was performed to analyze reactive oxygen species (ROS), cell cycle, and cell apoptosis. Western blotting and quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) were used to observe the changes of ROS and autophagy associated with imatinib resistance in CML. Our results indicated that ROS-autophagy formed one negative feedback loop and was associated with imatinib resistance. Additionally, the limited-rate enzymes of serine synthesis pathway were escalated in K562/G, which could contribute to the increased cyclin-dependent kinases and cell proliferation index. According to phosphoproteomics data, K562/G cells exhibited abnormal phosphorylation of splicing signals. These results revealed that it could be one useful strategy to correct metabolism shift and oxidative stress, or moderately regulate autophagy. Future research should focus on the discovery of potential targets in ROS-autophagy loop.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。