Polar Structure and Two-Dimensional Heisenberg Antiferromagnetic Properties of Arylamine-Based Manganese Chloride Layered Organic-Inorganic Perovskites

芳胺基氯化锰层状有机-无机钙钛矿的极性结构和二维海森堡反铁磁性质

阅读:6
作者:Liany Septiany, Diana Tulip, Mikhail Chislov, Jacob Baas, Graeme R Blake

Abstract

The breaking of inversion symmetry can enhance the multifunctional properties of layered hybrid organic-inorganic perovskites. However, the mechanisms by which inversion symmetry can be broken are not well-understood. Here, we study a series of MnCl4-based 2D perovskites with arylamine cations, namely, (C6H5CxH2xNH3)2MnCl4 (x = 0, 1, 2, 3), for which the x = 0, 1, and 3 members are reported for the first time. The compounds with x = 1, 2, and 3 adopt polar crystal structures to well above room temperature. We argue that the inversion symmetry breaking in these compounds is related to the rotational degree of freedom of the organic cations, which determine the hydrogen bonding pattern that links the organic and inorganic layers. We show that the tilting of MnCl6 octahedra is not the primary mechanism involved in inversion symmetry breaking in these materials. All four compounds show 2D Heisenberg antiferromagnetic behavior. A ferromagnetic component develops in each case below the long-range magnetic ordering temperature of ∼42-46 K due to spin canting.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。