Angiopoietin-2 silence alleviates lipopolysaccharide-induced inflammation, barrier dysfunction and endoplasmic reticulum stress of intestinal epithelial cells by blocking Notch signaling pathway

血管生成素-2沉默通过阻断Notch信号通路减轻脂多糖诱导的肠上皮细胞炎症、屏障功能障碍和内质网应激

阅读:5
作者:Liying Dai, Shuangshuang Jie, Shaohua Bi, Qing Qing, Jun Chen, Le Wang

Abstract

Necrotizing enterocolitis, a devastating gastrointestinal disease with high mortality, poses great threats to global health. Therefore, we conducted this study to explore the role of ANGPT2, as well as the potential mechanism, in necrotizing enterocolitis. IEC-6 cells were stimulated with lipopolysaccharide (LPS) to induce necrotizing enterocolitis model in vitro. The expression of ANGPT2 was measured by RT-qPCR. The cell viability was detected using CCK-8. Besides, the expressions of endoplasmic reticulum (ER) stress-related proteins, Notch signaling pathway-related proteins and tight junction proteins were checked by western blot. The apoptosis and inflammatory response were detected by TUNEL and ELISA, respectively. Moreover, with the adoption of TEER, the cell monolayer permeability was detected. The results showed that ANGPT2 expression was greatly increased after LPS induction. In addition, ANGPT2 knockdown significantly decreased the apoptosis, inflammatory response, barrier dysfunction and endoplasmic reticulum stress of LPS-induced IEC-6 cells. What is more, ANGPT2 knockdown could block Notch signaling pathway. Additionally, with the treatment of Jagged-1, the protective effect of ANGPT2 knockdown on LPS-induced intestinal injury was partly abolished. To sum up, silencing ANGPT2 could improve LPS-induced inflammation, barrier dysfunction and ER stress of intestinal epithelial cells via blocking Notch signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。