Impact of elevated dietary sodium intake on NAD(P)H oxidase and SOD in the cortex and medulla of the rat kidney

膳食钠摄入量增加对大鼠肾脏皮质和髓质中 NAD(P)H 氧化酶和 SOD 的影响

阅读:4
作者:Edward J Johns, Barbara O'Shaughnessy, Susan O'Neill, Bríd Lane, Vincent Healy

Abstract

Pathophysiological states, including cardiovascular and renal diseases, are characterized by oxidative stress but what is less clear is whether physiological challenges incur a degree of altered oxidative metabolism. To this end, this study examined whether exposure to a high dietary sodium intake could cause an oxidative stress at the kidney. Animals, placed on either 0.3% or 3% sodium diets for 2 wk, were given a lethal dose of anesthetic, and kidneys were removed to analyze both NAD(P)H oxidase (NOX) and superoxide dismutase (SOD) expression and activities in the cortex and medulla. Placing animals on the high-sodium diet raised sodium and water excretion and caused an approximately 14-fold increase in urinary excretion of 8-isoprostane, a marker of oxidative stress, which was attenuated by chronic treatment with apocynin to prevent NAD(P)H oxidase activity. The protein expression of the NAD(P)H oxidase subunits NOX2 and p47(phox) and overall NAD(P)H oxidase activity were approximately doubled in the cortex of the rats on the high-sodium diet compared with those on the normal sodium intake while both SOD activity and expression were unchanged. By contrast, neither NOX nor SOD protein expression or activity were altered in the medulla when the rats were placed on the high-sodium intake. These data suggest that an elevation in dietary sodium intake can lead to increased generation of reactive oxygen species and a state of oxidative stress in the cortex but not to such a degree that it extends to the medulla.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。