Endogenous bioelectric currents promote differentiation of the mammalian lens

内源性生物电流促进哺乳动物晶状体的分化

阅读:3
作者:Lin Cao, Jie Liu, Jin Pu, J Martin Collinson, John V Forrester, Colin D McCaig

Abstract

The functional roles of bioelectrical signals (ES) created by the flow of specific ions at the mammalian lens equator are poorly understood. We detected that mature, denucleated lens fibers expressed high levels of the α1 and β1 subunits of Na+ /K+ -ATPase (ATP1A1 and ATP1B1 of the sodium pump) and had a hyperpolarized membrane potential difference (Vmem ). In contrast, differentiating, nucleated lens fiber cells had little ATP1A1 and ATP1B1 and a depolarized Vmem . Mimicking the natural equatorial ES with an applied electrical field (EF) induced a striking reorientation of lens epithelial cells to lie perpendicular to the direction of the EF. An EF also promoted the expression of β-crystallin, aquaporin-0 (AQP0) and the Beaded Filament Structural Protein 2 (BFSP2) in lens epithelial cells (LECs), all of which are hallmarks of differentiation. In addition, applied EF activated the AKT and CDC2 and inhibition of AKT reduced the activation of CDC2. Our results indicate that the endogenous bioelectrical signal at the lens equator promotes differentiation of LECs into denucleated lens fiber cells via depolarization of Vmem. Development of methods and devices of EF application or amplification in vivo may supply a novel treatment for lens diseases and even promote regeneration of a complete new lens following cataract surgery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。