Hyperosmolar expansion medium improves nucleus pulposus cell phenotype

高渗扩张液改善髓核细胞表型

阅读:7
作者:Lisanne T Laagland, Frances C Bach, Laura B Creemers, Christine L Le Maitre, Deepani W Poramba-Liyanage, Marianna A Tryfonidou

Background

Repopulating the degenerated intervertebral disc (IVD) with tissue-specific nucleus pulposus cells (NPCs) has already been shown to promote regeneration in various species. Yet the applicability of NPCs as cell-based therapy has been hampered by the low cell numbers that can be extracted from donor IVDs and their potentially limited regenerative capacity due to their degenerated phenotype. To optimize the expansion conditions, we investigated the effects of increasing culture medium osmolarity during expansion on the phenotype of dog NPCs and their ability to produce a healthy extracellular matrix (ECM) in a 3D culture model.

Conclusions

Altogether, our findings show that increasing medium osmolarity during expansion results in an NPC population with improved phenotype, which could enhance the potential of cell-based therapies for IVD regeneration.

Methods

Dog NPCs were expanded in expansion medium with a standard osmolarity of 300 mOsm/L or adjusted to 400 or 500 mOsm/L in both normoxic and hypoxic conditions. Following expansion, NPCs were cultured in a 3D culture model in chondrogenic culture medium with a standard osmolarity. Read-out parameters included cell proliferaton rate, morphology, phenotype and healthy ECM production.

Results

Increasing the expansion medium osmolarity from 300 to 500 mOsm/L resulted in NPCs with a more rounded morphology and a lower cell proliferation rate accompanied by the expression of several healthy NPC and progenitor markers at gene (KRT18, ACAN, COL2, CD73, CD90) and protein (ACAN, PAX1, CD24, TEK, CD73) level. The NPCs expanded at 500 mOsm/L were able to retain most of their phenotypic markers and produce healthy ECM during 3D culture independent of the oxygen level used during expansion. Conclusions: Altogether, our findings show that increasing medium osmolarity during expansion results in an NPC population with improved phenotype, which could enhance the potential of cell-based therapies for IVD regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。