SARS-CoV2 Nsp3 protein triggers cell death and exacerbates amyloid β42-mediated neurodegeneration

SARS-CoV2 Nsp3 蛋白引发细胞死亡并加剧淀粉样蛋白 β42 介导的神经退行性变

阅读:6
作者:Aditi Singh, Anuradha Venkatakrishnan Chimata, Prajakta Deshpande, Soumya Bajpai, Anjali Sangeeth, Mrigendra Rajput, Amit Singh

Abstract

Infection caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) virus, responsible for the coronavirus disease 2019 (COVID-19) pandemic, induces symptoms including increased inflammatory response, severe acute respiratory syndrome (SARS), cognitive dysfunction like brain fog, and cardiovascular defects. Long-term effects of SARS-CoV2 COVID-19 syndrome referred to as post-COVID-19 syndrome on age-related progressive neurodegenerative disorders such as Alzheimer’s disease remain understudied. Using the targeted misexpression of individual SARS-CoV2 proteins in the retinal neurons of the Drosophila melanogaster eye, we found that misexpression of nonstructural protein 3 (Nsp3), a papain-like protease, ablates the eye and generates dark necrotic spots. Targeted misexpression of Nsp3 in the eye triggers reactive oxygen species production and leads to apoptosis as shown by cell death reporters, terminal deoxynucleotidyl transferase (TdT) dUTP Nick-end labeling (TUNEL) assay, and dihydroethidium staining. Furthermore, Nsp3 misexpression activates both apoptosis and autophagy mechanism(s) to regulate tissue homeostasis. Transient expression of SARS-CoV2 Nsp3 in murine neuroblastoma, Neuro-2a cells, significantly reduced the metabolic activity of these cells and triggers cell death. Misexpression of SARS-CoV2 Nsp3 in an Alzheimer’s disease transgenic fly eye model (glass multiple repeats [GMR]>amyloid β42) further enhances the neurodegenerative rough eye phenotype due to increased cell death. These findings suggest that SARS-CoV2 utilizes Nsp3 protein to potentiate cell death response in a neurodegenerative disease background that has high pre-existing levels of neuroinflammation and cell death.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。