Perilla frutescens seed meal as a fat substitute mitigates heterocyclic amine formation and protein oxidation and improves fatty acid profile of pan-fried chicken patties

紫苏籽粉作为脂肪替代品可减轻杂环胺的形成和蛋白质氧化,并改善煎鸡肉饼的脂肪酸组成

阅读:6
作者:Iftikhar Ali Khan, Baoping Shi, Haibo Shi, Asad Nawaz, Zongshuai Zhu, Muhammad Umair Ijaz, Muzahir Hussain, Asad Khan, Mingfu Wang, Feng Chen, Daoying Wang, Ka-Wing Cheng

Abstract

Fatty acid profile, protein and fatty acid oxidation and flavor profile of pan-fried chicken patties formulated with various levels of Perilla frutescens seed meal (PSM) as a fat substitute was investigated in this study. The formation of heterocyclic amines (HCAs) in the chicken patties was also evaluated. The results showed that pan-fried patties formulated with 20% PSM (PSM4) had the highest ranges of oleic acid and ΣMUFA content and ΣPUFA/ΣSFA ratio. Low to medium levels of PSM (PSM1, 2, and 3 corresponding to 5, 10, and 15% of PSM, respectively) reduced the content of lipid peroxidation products, while high level (PSM4) increased it. All levels of PSM were also found to be effective against elevation in carbonyl content relative to the control. Moreover, the PSM effectively inhibited HCA formation in the chicken patties. The total contents of HCAs in PSM1, PSM2, PSM3, and PSM4 samples were significantly (P < 0.05) lower than that of the control sample, corresponding to 31.9, 46.1, 57.2, and 44.8% inhibition, respectively. PSM4, however, had no or very little effect on the formation of PhIP, 4,8-DiMeIQx and AαC, despite a strong inhibitory effect on MeIQx formation. These findings not only support the promising potential of PSM for application as a fat substitute to improve the fatty acid profile and reduce the content of harmful by-products in heat-processed chicken, but also highlight that appropriate addition level is a critical factor in optimizing the functional capacity of this natural agent.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。