Identification and validation of smoking-related genes in lung adenocarcinoma using an in vitro carcinogenesis model and bioinformatics analysis

利用体外致癌模型和生物信息学分析鉴定和验证肺腺癌中的吸烟相关基因

阅读:5
作者:Jin Wang, Tao Chen, Xiaofan Yu, Nan OUYang, Lirong Tan, Beibei Jia, Jian Tong, Jianxiang Li

Background

Lung cancer is one of the most common carcinomas in the world, and lung adenocarcinoma (LUAD) is the most lethal and most common subtype of lung cancer. Cigarette smoking is the most leading risk factor of lung cancer, but it is still unclear how normal lung cells become cancerous in cigarette smokers. This study aims to identify potential smoking-related biomarkers associated with the progression and prognosis of LUAD, as well as their regulation mechanism using an in vitro carcinogenesis model and bioinformatics analysis.

Conclusion

In conclusion, our observations indicated that the differential expression of GYPC, NME1 and SLIT2 may be regulated by DNA methylation, and they are associated with cigarette smoke-induced LUAD, as well as serve as prognostic factors in LUAD patients.

Results

Based on the integration analysis of four Gene Expression Omnibus (GEO) datasets and our mRNA sequencing analysis, 2 up-regulated and 11 down-regulated genes were identified in both S30 cells and LUAD. By analyzing the LUAD dataset in The Cancer Gene Analysis (TCGA) database, 3 of the 13 genes, viz., glycophorin C (GYPC), NME/NM23 nucleoside diphosphate kinase 1 (NME1) and slit guidance ligand 2 (SLIT2), were found to be significantly correlated with LUAD patients' smoking history. The expression levels of GYPC, NME1 and SLIT2 in S30 cells and lung cancer cell lines were validated by quantitative PCR, immunofluorescence, and western blot assays. Besides, these three genes are associated with tumor invasion depth, and elevated expression of NME1 was correlated with lymph node metastasis. The enrichment analysis suggested that these genes were highly correlated to tumorigenesis and metastasis-related biological processes and pathways. Moreover, the increased expression levels of GYPC and SLIT2, as well as decreased expression of NME1 were associated with a favorable prognosis in LUAD patients. Furthermore, based on the multi-omics data in the TCGA database, these genes were found to be regulated by DNA methylation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。