S1P2 receptor-dependent Rho-kinase activation mediates vasoconstriction in the murine pulmonary circulation induced by sphingosine 1-phosphate

S1P2 受体依赖性 Rho 激酶激活介导鞘氨醇 1-磷酸引起的小鼠肺循环血管收缩

阅读:8
作者:William S Szczepaniak, Bruce R Pitt, Bryan J McVerry

Abstract

Vasoactive properties of sphingosine 1-phosphate (S1P) have been demonstrated by many investigators to vary in systemic vascular beds. These variations appear to reflect differential S1P receptor expression in the vasculature of these tissues. Although S1P has been demonstrated to enhance endothelial barrier function, induce airway hyperresponsiveness, and modulate immune responses in the lung, the pulmonary vasomotor effects of S1P remain poorly defined. In the present study, we sought to define the vasoregulatory effects of S1P in the pulmonary vasculature and to elucidate the underlying mechanisms operative in effecting the response in the intact lung. S1P (10 microM) increased pulmonary vascular resistance (PVR) by 36% in the isolated perfused mouse lung. S1P-induced vasoconstriction was reduced by 64% by concomitant administration of the Rho-kinase inhibitor Y27632 (10 microM). Similarly, the S1P response was attenuated by >50% after S1P(2) receptor antagonism (JTE-013; 10 microM) and in S1P(2) receptor null mice. In contrast, S1P(3) receptor antagonism (VPC23019; 10 microM) had no effect on the contractile response to S1P. Furthermore, we confirmed the role of Rho-kinase as an important regulator of basal vasomotor tone in the isolated perfused mouse lung. These results suggest that S1P is capable of altering pulmonary vascular tone in vivo and may play an important role in the modulation of pulmonary vascular tone both in the normal lung and under pathological conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。