Idebenone-Activating Autophagic Degradation of α-Synuclein via Inhibition of AKT-mTOR Pathway in a SH-SY5Y-A53T Model of Parkinson's Disease: A Network Pharmacological Approach

艾地苯醌通过抑制 AKT-mTOR 通路激活帕金森病 SH-SY5Y-A53T 模型中的 α-突触核蛋白自噬降解:网络药理学方法

阅读:6
作者:Pei Kun He #, Yu Yuan Gao #, Feng-Juan Lyu, Jia Ning Chen, Yu Hu Zhang, Kun Nie, Qing Xi Zhang, Rui Huang, Qing Rui Duan, Man Li Guo, Zhi Hua Liu, He Ling Huang, Gui Xian Ma, Li Juan Wang, Li Min Wang

Background

Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, which currently lacks disease-modifying therapy to slow down its progression. Idebenone, a coenzyme Q10 (CQ10) analogue, is a well-known antioxidant and has been used to treat neurological disorders. However, the mechanism of Idebenone on PD has not been fully elucidated. This study aims to predict the potential targets of Idebenone and explore its therapeutic mechanism against PD. Method: We obtained potential therapeutic targets through database prediction, followed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Next, we constructed and analyzed a protein-protein interaction network (PPI) and a drug-target-pathway-disease network. A molecular docking test was conducted to identify the interactions between Idebenone and potential targets. Lastly, a PD cell line of SH-SY5Y overexpressing mutant α-synuclein was used to validate the molecular mechanism. Result: A total of 87 targets were identified based on network pharmacology. The enrichment analysis highlighted manipulation of MAP kinase activity and the PI3K-AKT signaling pathway as potential pharmacological targets for Idebenone against PD. Additionally, molecular docking showed that AKT and MAPK could bind tightly with Idebenone. In the cell model of PD, Idebenone activated autophagy and promoted α-synuclein degradation by suppressing the AKT/mTOR pathway. Pretreating cells with chloroquine (CQ) to block autophagic flux could diminish the pharmacological effect of Idebenone to clear α-synuclein.

Conclusion

This study demonstrated that Idebenone exerts its anti-PD effects by enhancing autophagy and clearance of α-synuclein, thus providing a theoretical and experimental basis for Idebenone therapy against PD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。