Human adenovirus 36 decreases fatty acid oxidation and increases de novo lipogenesis in primary cultured human skeletal muscle cells by promoting Cidec/FSP27 expression

人类腺病毒 36 通过促进 Cidec/FSP27 表达降低原代培养人类骨骼肌细胞中的脂肪酸氧化并增加从头脂肪生成

阅读:5
作者:Z Q Wang, Y Yu, X H Zhang, E Z Floyd, W T Cefalu

Background

It has been well documented that human adenovirus type 36 (Ad-36) is associated with obesity. However, the underlying molecular mechanism of Ad-36 inducing obesity remains unknown. We sought to investigate the effect of Ad-36 infection on Cidec, AMPK pathway and lipid metabolism in primary cultured human skeletal muscle cells.

Conclusion

This study suggests that Ad-36 induced lipid droplets in the cultured skeletal muscle cells and this process may be mediated by promoting Cidec/FSP27 expression.

Methods

Cidec/fat-specific protein 27 (FSP27), fatty acid oxidation, AMPK signaling and the abundance of proteins involved in lipid synthesis were determined in muscle cells infected with various doses (1.9-7.6 MOI) of Ad-36 and non-lipogenic adenovirus type 2 (Ad-2) as a negative control as well as an uninfected control. Cidec/FSP27 siRNA transfection was performed in Ad-36-infected muscle cells.

Results

Our data show that Ad-36 significantly reduced fatty acid oxidation in a dose-dependent manner (all P values are <0.01), but Ad-2 did not affect fatty acid oxidation. Ad-36 substantially increased Cidec/FSP27, ACC, sterol regulatory element-binding protein 1c (SREBP-1c), SREBP-2 and 3-hydroxy-3-methylglutaryl-CoA reductase protein abundance, but significantly reduced AMPK activity, mitochondrial mass and uncoupling protein 3 (UCP3) abundance in comparison with control cells (all P values are <0.01). Oil Red O staining revealed that there was substantial fat accumulation in the Ad-36-infected muscle cells. Furthermore, Cidec/FSP27 siRNA transfection significantly reduced FSP27 expression and partially restored AMPK signaling, increased UCP3 and decreased SERBP 1c and perilipin proteins in Ad-36-infected muscle cells. Interestingly, neither Ad-36 nor Ad-2 affected peroxisome proliferator-activated receptor γ protein expression in muscle cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。