Cardiomyocyte electrical-mechanical synchronized model for high-content, dose-quantitative and time-dependent drug assessment

用于高含量、剂量定量和时间依赖性药物评估的心肌细胞电机械同步模型

阅读:5
作者:Jiaru Fang #, Xinwei Wei #, Hongbo Li #, Ning Hu, Xingxing Liu, Dongxin Xu, Tao Zhang, Hao Wan, Ping Wang, Xi Xie

Abstract

Cardiovascular diseases have emerged as a significant threat to human health. However, drug development is a time-consuming and costly process, and few drugs pass the preclinical assessment of safety and efficacy. The existing patch-clamp, Ca2+ imaging, and microelectrode array technologies in cardiomyocyte models for drug preclinical screening have suffered from issues of low throughput, limited long-term assessment, or inability to synchronously and correlatively analyze electrical and mechanical signals. Here, we develop a high-content, dose-quantitative and time-dependent drug assessment platform based on an electrical-mechanical synchronized (EMS) biosensing system. This microfabricated EMS can record both firing potential (FP) and mechanical beating (MB) signals from cardiomyocytes and extract a variety of characteristic parameters from these two signals (FP-MB) for further analysis. This system was applied to test typical ion channel drugs (lidocaine and isradipine), and the dynamic responses of cardiomyocytes to the tested drugs were recorded and analyzed. The high-throughput characteristics of the system can facilitate simultaneous experiments on a large number of samples. Furthermore, a database of various cardiac drugs can be established by heat map analysis for rapid and effective screening of drugs. The EMS biosensing system is highly promising as a powerful tool for the preclinical development of new medicines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。