Epigenetic regulation by G9a/GLP complex ameliorates amyloid-beta 1-42 induced deficits in long-term plasticity and synaptic tagging/capture in hippocampal pyramidal neurons

G9a/GLP 复合物的表观遗传调控可改善淀粉样β蛋白 1-42 引起的海马锥体神经元长期可塑性和突触标记/捕获缺陷

阅读:7
作者:Mahima Sharma, Tobias Dierkes, Sreedharan Sajikumar

Abstract

Altered epigenetic mechanisms are implicated in the cognitive decline associated with neurodegenerative diseases such as in Alzheimer's disease (AD). AD is the most prevalent form of dementia worldwide; amyloid plaques and neurofibrillary tangles are the histopathological hallmarks of AD. We have recently reported that the inhibition of G9a/GLP complex promotes long-term potentiation (LTP) and its associative mechanisms such as synaptic tagging and capture (STC). However, the role of this complex in plasticity impairments remains elusive. Here, we investigated the involvement of G9a/GLP complex in alleviating the effects of soluble Amyloid-β 1-42 oligomers (oAβ) on neuronal plasticity and associativity in the CA1 region of acute hippocampal slices from 5- to 7-week-old male Wistar rats. Our findings demonstrate that the regulation of G9a/GLP complex by inhibiting its catalytic activity reverses the amyloid-β oligomer-induced deficits in late-LTP and STC. This is achieved by releasing the transcription repression of the brain-derived neurotrophic factor (Bdnf) gene. The catalytic inhibition of G9a/GLP complex leads to the upregulation of Bdnf expression in the slices treated with oAβ. This further ensures the availability of BDNF that subsequently binds its receptor tyrosine kinase B (TrkB) and maintains the late-LTP. Furthermore, the capture of BDNF by weakly activated synapses re-establishes STC. Our findings regarding the reinstatement of functional plasticity and associativity in AD-like conditions provide the first evidence for the role of G9a/GLP complex in AD. We propose G9a/GLP complex as the possible target for preventing oAβ-induced plasticity deficits in hippocampal neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。