Early-life physical activity reverses metabolic and Foxo1 epigenetic misregulation induced by gestational sleep disturbance

早期体力活动可逆转妊娠期睡眠障碍引起的代谢和 Foxo1 表观遗传失调

阅读:9
作者:Vesco Mutskov, Abdelnaby Khalyfa, Yang Wang, Alba Carreras, Marcelo A Nobrega, David Gozal

Abstract

Sleep disorders are highly prevalent during late pregnancy and can impose adverse effects, such as preeclampsia and diabetes. However, the consequences of sleep fragmentation (SF) on offspring metabolism and epigenomic signatures are unclear. We report that physical activity during early life, but not later, reversed the increased body weight, altered glucose and lipid homeostasis, and increased visceral adipose tissue in offspring of mice subjected to gestational SF (SFo). The reversibility of this phenotype may reflect epigenetic mechanisms induced by SF during gestation. Accordingly, we found that the metabolic master switch Foxo1 was epigenetically misregulated in SFo livers in a temporally regulated fashion. Temporal Foxo1 analysis and its gluconeogenetic targets revealed that the epigenetic abnormalities of Foxo1 precede the metabolic syndrome phenotype. Importantly, regular physical activity early, but not later in life, reversed Foxo1 epigenetic misregulation and altered the metabolic phenotype in gestationally SF-exposed offspring. Thus, we have identified a restricted postnatal period during which lifestyle interventions may reverse the Foxo1 epigenetically mediated risk for metabolic dysfunction later in the life, as induced by gestational sleep disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。