Metformin mitigates cholesterol accumulation via the AMPK/SIRT1 pathway to protect osteoarthritis chondrocytes

二甲双胍通过 AMPK/SIRT1 通路减轻胆固醇积累,保护骨关节炎软骨细胞

阅读:5
作者:Hengte Xing, Chuancai Liang, Chenyu Wang, Xiongfeng Xu, Yong Hu, Bo Qiu

Abstract

In this study, we aim to investigate the effect of metformin on cholesterol synthesis and efflux-related genes in chondrocytes during osteoarthritis (OA) and explore the underlying mechanisms. Primary chondrocytes were harvested from Wistar rat cartilage and divided into control and treatment groups. Chondrocytes in the treatment group were treated with interleukin-1β (IL-1β) mimicking the inflammatory environment of osteoarthritis. Subsequently, RT-qPCR, Western blotting, immunofluorescence staining, and Cell Counting Kit-8 (CCK-8) were conducted. Significant reductions in phosphorylated AMP-activated protein kinase (p-AMPK) and silent information regulator 1 (SIRT1) protein expression were observed in both human OA chondrocytes and cultured primary murine chondrocytes treated with IL-1β, while AMP-activated protein kinase (AMPK) was not inhibited. Moreover, in the presence of IL-1β, metformin significantly increased the expression of p-AMPK and SIRT1 at the protein and mRNA level. Meanwhile, metformin could reverse IL-1β-induced cartilage extracellular matrix degradation in chondrocytes from the rat model of OA (treated by IL-β) by activating the AMPK/SIRT1 pathway. Moreover, metformin activated AMPK and SIRT1, mediated by the activation of SREBP-2 and HMGCR in OA chondrocytes. Inhibiting AMPK/SIRT1 activity by its specific inhibitor could suppress IL-1β-induced expression of LXRα, ABCA1 and ApoA1 and cholesterol efflux. Thus, metformin inhibits cholesterol synthesis and promotes cholesterol efflux by activating the AMPK/SIRT1 pathway in OA chondrocytes. This study improves our understanding of the effect of metformin on cholesterol accumulation in OA chondrocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。