Ferrous sulfate-loaded hydrogel cures Staphylococcus aureus infection via facilitating a ferroptosis-like bacterial cell death in a mouse keratitis model

载硫酸亚铁的水凝胶通过促进小鼠角膜炎模型中的铁死亡样细菌细胞死亡来治愈金黄色葡萄球菌感染

阅读:5
作者:Zhen Wang, Hongbo Li, Wei Zhou, Jintae Lee, Zhenbin Liu, Zhixing An, Dan Xu, Haizhen Mo, Liangbin Hu, Xiaohui Zhou

Abstract

Hydrogels loaded with ampicillin, vancomycin or other antibiotics are one of the most widely used therapeutic agents for keratitis caused by Staphylococcus aureus. However, emergence of methicillin-resistant S. aureus (MRSA) makes infections harder to be treated by antibiotic-based hydrogels, urging the development of novel antibacterial materials. Inspired by mammalian ferroptosis, we determined the bactericidal effects of ferrous sulfate (FeSO4) on S. aureus, and evaluated the therapeutic potential of FeSO4-loaded hydrogel in a mouse keratitis model. The results showed that FeSO4 facilitated ferroptosis-like cell death in S. aureus with the key characteristics of reactive oxygen species (ROS) generation and lipid peroxidation. Notably, FeSO4 also efficiently killed persisters and MRSA, and eliminated biofilms of S. aureus. RNA profiles demonstrated that ferroptosis-related genes were significantly up-regulated, and the genes responsible for cell wall and cell membrane biosynthesis were down-regulated after exposure to Fe2+, supporting the occurrence of ferroptosis and cell lysis. We further prepared a FeSO4-loaded hydrogel by using hyaluronic acid (HA) and ascorbate. The FeSO4 hydrogel has the characteristics of injectability, self-healing, uniform distribution of Fe2+ in the three-dimensional gel structure, appropriate fluidity, high-water retention, high efficacy to kill MRSA, and excellent biocompatibility. In a mouse keratitis model, we showed that treatment of animals with FeSO4 hydrogel led to a rapid recovery of from keratitis, prevented the dissimilation of MRSA to the lung, and alleviated systemic inflammation, demonstrating the therapeutic potential of FeSO4 hydrogel. Taken together, our results indicated that FeSO4 hydrogel is a promising alternative to current antibiotics-dependent therapeutic materials for the treatment of infections by MRSA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。