Chloroquine attenuates lipopolysaccharide-induced inflammatory responses through upregulation of USP25

氯喹通过上调 USP25 减轻脂多糖诱导的炎症反应

阅读:7
作者:Changyu Ding, Fangfang Li, Yupeng Long, Jiang Zheng

Abstract

Lipopolysaccharide (LPS) is a key pathogenic factor in sepsis, and its recognition by toll-like receptor 4 (TLR4) can activate two district signaling pathways, leading to activation of transcription factors including NF-κB and interferon regulatory factor 3 (IRF3). Chloroquine (CQ) has been shown to affect LPS-TLR4 colocalization and inhibit both MyD88-dependent and TRAM/TRIF-dependent pathways, though the mechanism involved is still poorly understood. Here, we found that the ubiquitin-proteasome system might be involved in this process. CQ increased USP25, a deubiquitinating enzyme, as well as mRNA and protein expression in a dose-dependent manner, which might to some degree be involved in CQ attenuation of LPS-induced macrophage activation. Overexpression of USP25 decreased LPS-induced inflammatory cytokines like TNF-α, IL-6, and IFN-β, while specific siRNA-mediated USP25 silencing increased TNF-α, IL-6, and IFN-β production and secretion. In addition, USP25 deletion strengthened mitogen-activated protein kinase (MAPKs) phosphorylation and IκB degradation. Moreover, USP25 interference increased NF-κB and IRF3 nuclear translocation. Taken together, our data demonstrated a new possible regulator of LPS-induced macrophage activation mediated by CQ, through upregulation of USP25.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。