Role of Na⁺/Ca²⁺ exchanger in Ca²⁺ homeostasis in rat suprachiasmatic nucleus neurons

Na⁺/Ca²⁺交换器在大鼠视交叉上核神经元Ca²⁺稳态中的作用

阅读:6
作者:Yi-Chi Wang, Ya-Shuan Chen, Ruo-Ciao Cheng, Rong-Chi Huang

Abstract

Intracellular Ca(2+) is critical to the central clock of the suprachiasmatic nucleus (SCN). However, the role of Na(+)/Ca(2+) exchanger (NCX) in intracellular Ca(2+) concentration ([Ca(2+)]i) homeostasis in the SCN is unknown. Here we show that NCX is an important mechanism for somatic Ca(2+) clearance in SCN neurons. In control conditions Na(+)-free solution lowered [Ca(2+)]i by inhibiting TTX-sensitive as well as nimodipine-sensitive Ca(2+) influx. With use of the Na(+) ionophore monensin to raise intracellular Na(+) concentration ([Na(+)]i), Na(+)-free solution provoked rapid Ca(2+) uptake via reverse NCX. The peak amplitude of 0 Na(+)-induced [Ca(2+)]i increase was larger during the day than at night, with no difference between dorsal and ventral SCN neurons. Ca(2+) extrusion via forward NCX was studied by determining the effect of Na(+) removal on Ca(2+) clearance after high-K(+)-induced Ca(2+) loads. The clearance of Ca(2+) proceeded with two exponential decay phases, with the fast decay having total signal amplitude of ∼85% and a time constant of ∼7 s. Na(+)-free solution slowed the fast decay rate threefold, whereas mitochondrial protonophore prolonged mostly the slow decay. In contrast, blockade of plasmalemmal and sarco(endo)plasmic reticulum Ca(2+) pumps had little effect on the kinetics of Ca(2+) clearance. RT-PCR indicated the expression of NCX1 and NCX2 mRNAs. Immunohistochemical staining showed the presence of NCX1 immunoreactivity in the whole SCN but restricted distribution of NCX2 immunoreactivity in the ventrolateral SCN. Together our results demonstrate an important role of NCX, most likely NCX1, as well as mitochondrial Ca(2+) uptake in clearing somatic Ca(2+) after depolarization-induced Ca(2+) influx in SCN neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。