Sono-Immunotherapy Mediated Controllable Composite Nano Fluorescent Probes Reprogram the Immune Microenvironment of Hepatocellular Carcinoma

声免疫治疗介导的可控复合纳米荧光探针重新编程肝细胞癌的免疫微环境

阅读:7
作者:Yichi Chen, Bolin Wu, Haitao Shang, Yucao Sun, Huimin Tian, Huajing Yang, Chunyue Wang, Xiaodong Wang, Wen Cheng

Background

Despite the clinical efficacy of immunotherapy in treating malignant tumors, its effectiveness is often hampered by the immunosuppressive nature of the tumor microenvironment (TME). In this study, we propose the design of a nanoscale ultrasound contrast agent capable of triggering macrophage polarization and immunogenic cell death (ICD) for the treatment of hepatocellular carcinoma (HCC) through sonodynamic treatment (SDT) and immunotherapy.

Conclusion

The SDT-initiated immunotherapy utilizing ICG@C3F8-R848 NBs demonstrates significant tumor suppression effects with minimal risk of systemic toxicity. The utilization of this self-delivery re-education technique would contribute to advancing the development of nanomedicine for the treatment of hepatocellular carcinoma.

Methods

The re-educator (designated as ICG@C3F8-R848 NBs) is composed of the Toll-like receptor agonist resiquimod (R848) and the sonosensitizer Indocyanine green (ICG), utilizing nanobubbles (NBs) as carriers. The technique known as ultrasound-targeted nanobubble destruction (UTND) employs nanosized microbubbles and low-frequency ultrasound (LFUS) to ensure accurate drug delivery and enhance safety.

Results

Following intravenous delivery, ICG@C3F8-R848 NBs have the potential to selectively target and treat primary tumors using SDT in conjunction with ultrasonography. Importantly, R848 can enhance antitumor immunity by inducing the polarization of macrophages from an M2 to an M1 phenotype.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。