Poly(ADP-ribosyl)ation of BRD7 by PARP1 confers resistance to DNA-damaging chemotherapeutic agents

PARP1 对 BRD7 进行聚(ADP-核糖基化)可产生对 DNA 损伤化疗药物的抗性

阅读:5
作者:Kaishun Hu, Wenjing Wu, Yu Li, Lehang Lin, Dong Chen, Haiyan Yan, Xing Xiao, Hengxing Chen, Zhen Chen, Yin Zhang, Shuangbing Xu, Yabin Guo, H Phillip Koeffler, Erwei Song, Dong Yin

Abstract

The bromodomain-containing protein 7 (BRD7) is a tumour suppressor protein with critical roles in cell cycle transition and transcriptional regulation. Whether BRD7 is regulated by post-translational modifications remains poorly understood. Here, we find that chemotherapy-induced DNA damage leads to the rapid degradation of BRD7 in various cancer cell lines. PARP-1 binds and poly(ADP)ribosylates BRD7, which enhances its ubiquitination and degradation through the PAR-binding E3 ubiquitin ligase RNF146. Moreover, the PARP1 inhibitor Olaparib significantly enhances the sensitivity of BRD7-positive cancer cells to chemotherapeutic drugs, while it has little effect on cells with low BRD7 expression. Taken together, our findings show that PARP1 induces the degradation of BRD7 resulting in cancer cell resistance to DNA-damaging agents. BRD7 might thus serve as potential biomarker in clinical trial for the prediction of synergistic effects between chemotherapeutic drugs and PARP inhibitors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。