Towards a comprehensive approach for characterizing cell activity in bright-field microscopic images

寻求一种在明视野显微图像中表征细胞活动的综合方法

阅读:6
作者:Stefan Baar, Masahiro Kuragano, Kiyotaka Tokuraku, Shinya Watanabe

Abstract

When studying physical cellular response observed by light microscopy, variations in cell behavior are difficult to quantitatively measure and are often only discussed on a subjective level. Hence, cell properties are described qualitatively based on a researcher's impressions. In this study, we aim to define a comprehensive approach to estimate the physical cell activity based on migration and morphology based on statistical analysis of a cell population within a predefined field of view and timespan. We present quantitative measurements of the influence of drugs such as cytochalasin D and taxol on human neuroblastoma, SH-SY5Y cell populations. Both chemicals are well known to interact with the cytoskeleton and affect the cell morphology and motility. Being able to compute the physical properties of each cell for a given observation time, requires precise localization of each cell even when in an adhesive state, where cells are not visually differentiable. Also, the risk of confusion through contaminants is desired to be minimized. In relation to the cell detection process, we have developed a customized encoder-decoder based deep learning cell detection and tracking procedure. Further, we discuss the accuracy of our approach to quantify cell activity and its viability in regard to the cell detection accuracy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。