Development, characterization and in vitro-in vivo evaluation of Farnesol loaded niosomal gel for applications in oral candidiasis treatment

法呢醇载囊泡凝胶在口腔念珠菌病治疗中的开发、表征及体内外评价

阅读:4
作者:Tejas Barot, Deepak Rawtani, Pratik Kulkarni

Conclusions

This novel niosome loaded gel-based formulation could make the oral candidiasis healing process more efficient while improving patient compliance. With the optimized methodology used in this work, such formulation approaches can become an efficient, industrially scalable, and cost-effective alternatives to the existing conventional formulations.

Methods

Various gelling systems were evaluated for their rheological and stability properties. The formulation was statistically optimized using experimental design method (Box-Behnken). Transmission electron microscopy (TEM) and Atomic force microscopy (AFM) were used to observe the niosomal surface morphology. Centrifugation method and dialysis method were used to find out the % entrapment efficiency (%EE) and in-vitro release of Farnesol, respectively. In-vitro antifungal effect and cell biocompatibility of the Farnesol loaded niosomal gel was also performed using Candida albicans (C. albicans) as the model organism and epithelial cell line (SW480) by MTT cytotoxicity assay. In-vivo skin irritation test was performed on rabbit skin. Key findings: Farnesol loaded niosomes were integrated into polymeric gel solution. The optimized formulation demonstrated acceptable % EE (>80%) and an optimum particle size (168.8 nm) along with a sustained release and a long-term storage stability for up to a period of 6 months. TEM and AFM observations displayed a spherical niosome morphology. Farnesol niosomal gel showed a higher antifungal efficacy, ex-vivo skin permeation and deposition in comparison to plain farnesol solution. The niosomal gel also showed negligible cytotoxicity to normal cells citing biocompatibility and was found to be non-toxic and non-irritant to rabbit skin. Conclusions: This novel niosome loaded gel-based formulation could make the oral candidiasis healing process more efficient while improving patient compliance. With the optimized methodology used in this work, such formulation approaches can become an efficient, industrially scalable, and cost-effective alternatives to the existing conventional formulations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。