Luminal leptin inhibits L-glutamine transport in rat small intestine: involvement of ASCT2 and B0AT1

腔内瘦素抑制大鼠小肠中 L-谷氨酰胺的转运:ASCT2 和 B0AT1 的参与

阅读:4
作者:Robert Ducroc, Yassine Sakar, Carmen Fanjul, Ana Barber, André Bado, Maria Pilar Lostao

Abstract

L-glutamine is the primary metabolic fuel for enterocytes. Glutamine from the diet is transported into the absorptive cells by two sodium-dependent neutral amino acid transporters present at the apical membrane: ASCT2/SLC1A5 and B(0)AT1/SLC6A19. We have demonstrated that leptin is secreted into the stomach lumen after a meal and modulates the transport of sugars after binding to its receptors located at the brush border of the enterocytes. The present study was designed to address the effect of luminal leptin on Na(+)-dependent glutamine (Gln) transport in rat intestine and identify the transporters involved. We found that 0.2 nM leptin inhibited uptake of Gln and phenylalanine (Phe) (substrate of B(0)AT1) using everted intestinal rings. In Ussing chambers, 10 mM Gln absorption followed as Na(+)-induced short-circuit current was inhibited by leptin in a dose-dependent manner (maximum inhibition at 10 nM; I(C50) = approximately 0.1 nM). Phe absorption was also decreased by leptin. Western blot analysis after 3-min incubation of the intestinal loops with 10 mM Gln, showed marked increase of ASCT2 and B(0)AT1 protein in the brush-border membrane that was reduced by rapid preincubation of the intestinal lumen with 1 nM leptin. Similarly, the increase in ASCT2 and B(0)AT1 gene expression induced by 60-min incubation of the intestine with 10 mM Gln was strongly reduced after a short preincubation period with leptin. Altogether these data demonstrate that, in rat, leptin controls the active Gln entry through reduction of both B(0)AT1 and ASCT2 proteins traffic to the apical plasma membrane and modulation of their gene expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。