Syndecan-4 and stromal cell-derived factor-1 alpha functionalized endovascular scaffold facilitates adhesion, spreading and differentiation of endothelial colony forming cells and functions under flow and shear stress conditions

Syndecan-4 和基质细胞衍生因子-1 alpha 功能化的血管内支架有利于内皮集落形成细胞的粘附、扩散和分化,并在流动和剪切应力条件下发挥作用

阅读:6
作者:Yidi Wu, Saami K Yazdani, Johanna Elin Marie Bolander, William D Wagner

Abstract

Acellular vascular scaffolds with capture molecules have shown great promise in recruiting circulating endothelial colony forming cells (ECFCs) to promote in vivo endothelialization. A microenvironment conducive to cell spreading and differentiation following initial cell capture are key to the eventual formation of a functional endothelium. In this study, syndecan-4 and stromal cell-derived factor-1 alpha were used to functionalize an elastomeric biomaterial composed of poly(glycerol sebacate), Silk Fibroin and Type I Collagen, termed PFC, to enhance ECFC-material interaction. Functionalized PFC (fPFC) showed significantly greater ECFCs capture capability under physiological flow. Individual cell spreading area on fPFC (1474 ± 63 μm2 ) was significantly greater than on PFC (1187 ± 54 μm2 ) as early as 2 h, indicating enhanced cell-material interaction. Moreover, fPFC significantly upregulated the expression of endothelial cell specific markers such as platelet endothelial cell adhesion molecule (24-fold) and Von Willebrand Factor (11-fold) compared with tissue culture plastic after 7 days, demonstrating differentiation of ECFCs into endothelial cells. fPFC fabricated as small diameter conduits and tested using a pulsatile blood flow bioreactor were stable and maintained function. The findings suggest that the new surface functionalization strategy proposed here results in an endovascular material with enhanced endothelialization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。