Primary murine microglia are resistant to nitric oxide inhibition of indoleamine 2,3-dioxygenase

原代小鼠小胶质细胞对吲哚胺 2,3-双加氧酶的一氧化氮抑制具有抗性

阅读:4
作者:Yunxia Wang, Marcus A Lawson, Keith W Kelley, Robert Dantzer

Abstract

Indoleamine 2,3-dioxygenase (IDO) is an intracellular heme-containing enzyme that is activated by proinflammatory cytokines, including interferon-γ (IFNγ), and metabolizes tryptophan along the kynurenine pathway. Activation of murine macrophages induces not only IDO but also nitric oxide synthase (iNOS), and the ensuing production of nitric oxide (NO) inhibits IDO. To determine the sensitivity of primary cultures of murine microglia to NO, microglia were stimulated with recombinant murine IFNγ (1 ng/ml) and lipopolysaccharide (LPS) (10 ng/ml). This combination of IFNγ+LPS synergized to produce maximal amounts of nitrite as early as 16h. Steady-state mRNAs for both iNOS and IDO were significantly increased by IFNγ+LPS at 4h post-treatment, followed by an increase in IDO enzymatic activity at 24h. Murine microglia (>95% CD11b(+)) were pretreated with the iNOS inhibitor, L-NIL hydrochloride, at a dose (30 μM) that completely abrogated production of nitrite. L-NIL had no effect on IDO mRNA at 4h or IDO enzymatic activity at 24h following stimulation with IFNγ+LPS. These data establish that IDO regulation in murine microglia is not restrained by NO, thereby permitting the accumulation of kynurenine and its downstream metabolites in the central nervous system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。