An auditory-responsive interneuron descending from the cricket brain: a new element in the auditory pathway

来自蟋蟀大脑的听觉反应中间神经元:听觉通路中的新元素

阅读:5
作者:Stephen M Rogers, Konstantinos Kostarakos, Berthold Hedwig

Abstract

Crickets receive auditory information from their environment via ears located on the front legs. Ascending interneurons forward auditory activity to the brain, which houses a pattern recognition network for phonotaxis to conspecific calling songs and which controls negative phonotaxis to high-frequency sound pulses. Descending brain neurons, however, which are clearly involved in controlling these behaviors, have not yet been identified. We describe a descending auditory-responsive brain neuron with an arborization pattern that coincides with the ring-like auditory neuropil in the brain formed by the axonal arborizations of ascending and local interneurons, indicating its close link to auditory processing. Spiking activity of this interneuron occurs with a short latency to calling song patterns and the neuron copies the sound pulse pattern. The neuron preferentially responds to short sound pulses, but its activity appears to be independent of the calling song pattern recognition process. It also receives a weaker synaptic input in response to high-frequency pulses, which may contribute to its short latency spiking responses. This interneuron could be a crucial part in the auditory-to-motor transformation of the nervous system and contribute to the motor control of cricket auditory behavior.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。