Inhibition of keloid by 32P isotope radiotherapy through suppressing TGF-β/Smad signaling pathway

32P同位素放射治疗通过抑制TGF-β/Smad信号通路抑制瘢痕疙瘩

阅读:7
作者:Long Xie, Liqun Huang, Guanjie Zhang, Yingrui Su

Background

Keloid seriously affects the appearance, and is accompanied by some symptoms including pain, burning, itching. Radioactive nuclides such as 32P have been proved to be effective in inhibiting the formation of keloid, but the mechanism remains unclear.

Conclusions

32P isotope injection and skin path greatly reduced the size of keloid, and the TGF-β/Smad signaling pathway was remarkably inhibited by 32P isotope treatment. The regulation of dermal fibroblast by 32P isotope was reversed by SRI-011381. 32P isotope might inhibit keloid through suppressing TGF-β/Smad signaling pathway. Our study provides a novel therapeutic strategy for the treatment of keloid.

Methods

The keloid animal model was established through keloid tissues implantation. Hematoxylin-Eosin (HE) and Masson staining were performed to investigate histological changes and collagen deposition. The mRNA and protein expression were assessed using RT-PCR and western blotting, respectively. Cell apoptosis and cycle were evaluated through flow cytometry.

Results

Both 32P isotope injection and skin path significantly reduced the size of keloid, and inhibited TGF-β/Smad signaling pathway. SRI-011381, the agonist of TGF-β/Smad signaling pathway, markedly reversed the influence of 32P isotope on cell proliferation, cell apoptosis, cell cycle of LNCaP cells and TGF-β/Smad signaling pathway. Conclusions: 32P isotope injection and skin path greatly reduced the size of keloid, and the TGF-β/Smad signaling pathway was remarkably inhibited by 32P isotope treatment. The regulation of dermal fibroblast by 32P isotope was reversed by SRI-011381. 32P isotope might inhibit keloid through suppressing TGF-β/Smad signaling pathway. Our study provides a novel therapeutic strategy for the treatment of keloid.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。