Re-Engineered Pseudoviruses for Precise and Robust 3D Mapping of Viral Infection

重新设计伪病毒,实现病毒感染的精确、稳健的 3D 映射

阅读:4
作者:Marvin Jungblut, Simone Backes, Marcel Streit, Georg Gasteiger, Sören Doose, Markus Sauer, Gerti Beliu

Abstract

Engineered vesicular stomatitis virus (VSV) pseudotyping offers an essential method for exploring virus-cell interactions, particularly for viruses that require high biosafety levels. Although this approach has been employed effectively, the current methodologies for virus visualization and labeling can interfere with infectivity and lead to misinterpretation of results. In this study, we introduce an innovative approach combining genetic code expansion (GCE) and click chemistry with pseudotyped VSV to produce highly fluorescent and infectious pseudoviruses (clickVSVs). These clickVSVs enable robust and precise virus-cell interaction studies without compromising the biological function of the viral surface proteins. We evaluated this approach by generating VSVs bearing a unique chemical handle for click labeling and assessing the infectivity in relevant cell lines. Our results demonstrate that clickVSVs maintain their infectivity post-labeling and present an efficiency about two times higher in detecting surface proteins compared to classical immunolabeling. The utilization of clickVSVs further allowed us to visualize and track 3D virus binding and infection in living cells, offering enhanced observation of virus-host interactions. Thus, clickVSVs provide an efficient alternative for virus-associated research under the standard biosafety levels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。