Anti-tumor activity of the TGF-β receptor kinase inhibitor galunisertib (LY2157299 monohydrate) in patient-derived tumor xenografts

TGF-β 受体激酶抑制剂 galunisertib(LY2157299 一水合物)在患者来源的肿瘤异种移植中的抗肿瘤活性

阅读:3
作者:Armin Maier, Anne-Lise Peille, Vincent Vuaroqueaux, Michael Lahn

Conclusions

From our data we conclude that intrinsic, tumor-dependent TGF-β signaling does not fully explain the anti-tumor effect of galunisertib. Hence, in vivo xenograft models may be more appropriate than in vitro clonogenic assays to assess the anti-tumor activity of TGF-β inhibitors such as galunisertib.

Methods

To investigate the relevance of blocking TGF-β signaling in tumor cells within the context of their respective tissue microenvironments, we treated a panel of patient-derived xenografts (PDX) with the selective TGF-β receptor kinase inhibitor LY2157299 monohydrate (galunisertib) and assessed both the in vitro and in vivo effects.

Purpose

The transforming growth factor-beta (TGF-β) signaling pathway is known to play a critical role in promoting tumor growth. Consequently, blocking this pathway has been found to inhibit tumor growth. In order to achieve an optimal anti-tumor effect, however, it remains to be established whether blocking the TGF-β signaling pathway alone is sufficient, or whether the tumor microenvironment plays an additional, possibly synergistic, role.

Results

Galunisertib was found to inhibit the growth in an in vitro clonogenic assay in 6.3% (5/79) of the examined PDX. Evaluation of the expression profiles of a number of genes, representing both canonical and non-canonical TGF-β signaling pathways, revealed that most PDX exhibited expression changes affecting TGF-β downstream signaling. Next, we subjected 13 of the PDX to an in vivo assessment and, by doing so, observed distinct response patterns. These results suggest that, next to intrinsic, also extrinsic or microenvironmental factors can affect galunisertib response. pSMAD2 protein expression and TGF-βRI mRNA expression levels were found to correlate with the in vivo galunisertib effects. Conclusions: From our data we conclude that intrinsic, tumor-dependent TGF-β signaling does not fully explain the anti-tumor effect of galunisertib. Hence, in vivo xenograft models may be more appropriate than in vitro clonogenic assays to assess the anti-tumor activity of TGF-β inhibitors such as galunisertib.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。