Corydalis saxicolaBunting total alkaloid eliminates Porphyromonas gingivalis strain 33277 internalized into macrophages by inhibition of TLR2

岩紫堇总生物碱通过抑制 TLR2 消除内化到巨噬细胞中的牙龈卟啉单胞菌菌株 33277

阅读:14
作者:Lan Yang, Guo-Cheng Mei, Jia-Xuan Wu, Qiao-Zhi Jiang, Zhi-Heng Su, Hai-Qing Liao, Zhen-Min Liu, Ren-Chuan Tao, Xiang-Zhi Yong

Conclusion

CSBTA exhibited the ability to reduce the presence of live intracellular P. gingivalis and lower IL-8 expression in macrophages, possibly by modulating TLR2 activity.

Methods

We established a P. gingivalis internalization model in macrophages by treating P. gingivalis-infected macrophages (MOI=100:1) with 200 μg/mL metronidazole and 300 μg/mL gentamicin for 1 h. Subsequently, the model was exposed to CSBTA at concentrations of 0.02 g/L or 1 μg/mL Pam3CSK4. After a 6 h treatment, cell lysis was performed with sterile water to quantify bacterial colonies. The mRNA expressions of TLR2 and interleukin-8 (IL-8) in macrophages were analyzed using RT-qPCR, while their protein levels were assessed via Western blot and ELISA respectively.

Objective

This study aimed to investigate the impact of Corydalis Saxicola Bunting Total Alkaloid (CSBTA) on Porphyromonas gingivalis internalization within macrophages and explore the potential role of Toll-Like Receptor 2 (TLR2) in this process.

Results

P. gingivalis could internalize into macrophages and enhance the expression of TLR2 and IL-8. Activation of TLR2 by Pam3CSK4 contributed to P. gingivalis survival within macrophages and increased TLR2 and IL-8 expression. Conversely, 0.02 g/L CSBTA effectively cleared intracellular P. gingivalis, achieving a 90 % clearance rate after 6 h. Moreover, it downregulated the expression of TLR2 and IL-8 induced by P. gingivalis. However, the inhibitory effect of CSBTA on the internalized P. gingivalis model was attenuated by Pam3CSK4.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。