Zinc Uptake and Storage During the Formation of the Cerebral Cortex in Mice

小鼠大脑皮层形成过程中锌的吸收和储存

阅读:4
作者:Jessy Hasna, Sylvain Bohic, Sophie Lemoine, Corinne Blugeon, Alexandre Bouron

Abstract

The cerebral cortex (or neocortex) is a brain structure formed during embryogenesis. The present study seeks to provide a detailed characterization of the Zn homeostatic mechanisms during cerebral cortex formation and development. To reach that goal, we have combined high-throughput RNA-sequencing analysis of the whole murine genome, X-ray fluorescence nanoimaging (XRF), inductively coupled plasma-atomic emission spectrometry (ICP-AES), and live-cell imaging of dissociated cortical neurons loaded with the Zn fluorescent probe FluoZin-3. The transcriptomic analysis was conducted from mRNAs isolated from cortices collected at embryonic (E) days 11 (E11), E13, and E17 and on postnatal day 1 (PN1) pups. This permitted to characterize the temporal pattern of expression of the main genes participating in the cellular transport, storage, and release of Zn during corticogenesis. It appears that cells of the immature cortex express a wide diversity of actors involved in Zn homeostasis with Zip7, SOD1, and metallothioneins being the most abundant transcripts throughout corticogenesis. The quantification of total Zn with XRF and ICP-AES reveals a reduction of Zn levels. Moreover, this is accompanied by a diminution of the size of the internal pools of mobilizable Zn. This study illustrates the tight temporal and spatial regulation of Zn homeostasis during cerebral brain development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。