Rac1 signalling coordinates epiboly movement by differential regulation of actin cytoskeleton in zebrafish

Rac1 信号通过对斑马鱼肌动蛋白细胞骨架的差异调节来协调细胞外包运动

阅读:4
作者:Yu-Long Li, Ming Shao, De-Li Shi

Abstract

Dynamic cytoskeleton organization is essential for polarized cell behaviours in a wide variety of morphogenetic events. In zebrafish, epiboly involves coordinated cell shape changes and expansion of cell layers to close the blastopore, but many important regulatory aspects are still unclear. Especially, the spatio-temporal regulation and function of actin structures remain to be determined for a better understanding of the mechanisms that coordinate epiboly movement. Here we show that Rac1 signalling, likely functions downstream of phosphatiditylinositol-3 kinase, is required for F-actin organization during epiboly progression in zebtafish. Using a dominant negative mutant of Rac1 and specific inhibitors to block the activation of this pathway, we find that marginal contractile actin ring is sensitive to inhibition of Rac1 signalling. In particular, we identify a novel function for this actin structure in retaining the external yolk syncytial nuclei within the margin of enveloping layer for coordinated movement toward the vegetal pole. Furthermore, we find that F-actin bundles, progressively formed in the vegetal cortex of the yolk cell, act in concert with marginal actin ring and play an active role in pulling external yolk syncytial nuclei toward the vegetal pole direction. This study uncovers novel roles of different actin structures in orchestrating epiboly movement. It helps to provide insight into the mechanisms regulating cellular polarization during early development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。