CircTADA2A suppresses the progression of colorectal cancer via miR-374a-3p/KLF14 axis

CircTADA2A 通过 miR-374a-3p/KLF14 轴抑制结直肠癌进展

阅读:5
作者:Zhen Li, Hongyu Yao, Shihao Wang, Guobin Li, Xiaoming Gu

Background

Colorectal cancer (CRC) is one of the causes of cancer-related death worldwide. The

Conclusion

CircTADA2A functioned as a tumor suppressor in CRC to inhibit the glycolysis and cell cycle and potentiate the apoptosis of CRC cells via miR-374a-3p/KLF14 axis.

Methods

The levels of circTADA2A, transcriptional adaptor 2A (TADA2A), microRNA-374a-3p (miR-374a-3p) and Kruppel like factor 14 (KLF14) were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Xenograft tumor assay was used to uncover the function of circTADA2A in vivo. The miRNA targets of circTADA2A were searched using circbank and starbase softwares, while DIANA TOOL was used to explore miR-374a-3p-mRNA interactions. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to validate the target relationship of circTADA2A/miR-374a-3p/KLF14 axis. Cell cycle and apoptosis were analyzed by flow cytometry. The glycolysis of CRC cells was determined by Seahorse XFe 96 Extracellular Flux Analyzer, Glucose Uptake Colorimetric Assay kit, Lactate Assay Kit II and ATP Colorimetric Assay kit. KLF14 protein level was measured by Western blot assay.

Results

CircTADA2A was abnormally down-regulated in CRC tissues and cell lines. CircTADA2A overexpression impeded CRC tumor growth in vivo. MiR-374a-3p was verified as a target of circTADA2A in CRC cells, and circTADA2A inhibited the malignant potential of CRC cells through targeting miR-374a-3p. MiR-374a-3p interacted with KLF14 messenger RNA (mRNA), and miR-374a-3p deteriorated CRC through down-regulating KLF14. CircTADA2A enhanced the abundance of KLF14 through targeting miR-374a-3p in CRC cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。