Sodium butyrate suppresses NOD1-mediated inflammatory molecules expressed in bovine hepatocytes during iE-DAP and LPS treatment

丁酸钠抑制 iE-DAP 和 LPS 治疗期间牛肝细胞中 NOD1 介导的炎症分子表达

阅读:5
作者:Animesh Chandra Roy, Guangjun Chang, Nana Ma, Yan Wang, Shipra Roy, Jing Liu, Zain-Ul Aabdin, Xiangzhen Shen

Abstract

Nucleotide oligomerization domain protein-1 (NOD1), a cytosolic pattern recognition receptor for the γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP) is associated with the inflammatory diseases. Very little is known how bovine hepatocytes respond to specific ligands of NOD1 and sodium butyrate (SB). Therefore, the aim of our study was to investigate the role of bovine hepatocytes in NOD1-mediated inflammation during iE-DAP or LPS treatment or SB pretreatment. To achieve this aim, hepatocytes separated from cows at ∼160 days in milk (DIM) were divided into six groups: The nontreated control group (CON), the iE-DAP-treated group (DAP), the lipopolysaccharide-treated group (LPS), iE-DAP with SB group (DSB), LPS with SB group (LSB), and the SB group. Both iE-DAP and LPS highly increased the expression of both NOD1 and RIPK2, the two key factors for the immune response in hepatocytes. IκBα, NF-κB/p65, and MAP kinases (ERK, JNK, and p38) were activated through phosphorylation. The activation of NF-κB and MAPK pathway consequently increased the proinflammatory cytokines, IL-6, TNF-α, IL-8, and IFN-γ and the chemokines CCL5, CCL20, and CXCL-10. Both treatments improved iNOS/NOS2 expression. However, iE-DAP was failed to express acute phase protein SAA3, but HP and LPS HP but SAA3. These ligands also increased LRRK2, TAK1, TAB1, and β-defensins expression. The SB pretreatment at lower dose restored the function of hepatocytes by suppressing these increased molecules, as HDAC3 was inhibited. The activated NOD1 negatively regulated the expression of FOXA2. Altogether these data suggest an important role of bovine hepatocytes to promote immune responses via NOD1 expression during infection in the liver and a key role of SB to attenuate inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。