Candida albicans-induced leukotriene biosynthesis in neutrophils is restricted to the hyphal morphology

白色念珠菌诱导的中性粒细胞白三烯生物合成仅限于菌丝形态

阅读:7
作者:Jana Fischer, Mark S Gresnigt, Oliver Werz, Bernhard Hube, Ulrike Garscha

Abstract

Neutrophils are the most abundant leukocytes in circulation playing a key role in acute inflammation during microbial infections. Phagocytosis, one of the crucial defence mechanisms of neutrophils against pathogens, is amplified by chemotactic leukotriene (LT)B4 , which is biosynthesized via 5-lipoxygenase (5-LOX). However, extensive liberation of LTB4 can be destructive by over-intensifying the inflammatory process. While enzymatic biosynthesis of LTB4 is well characterized, less is known about molecular mechanisms that activate 5-LOX and lead to LTB4 formation during host-pathogen interactions. Here, we investigated the ability of the common opportunistic fungal pathogen Candida albicans to induce LTB4 formation in neutrophils, and elucidated pathogen-mediated drivers and cellular processes that activate this pathway. We revealed that C. albicans-induced LTB4 biosynthesis requires both the morphological transition from yeast cells to hyphae and the expression of hyphae-associated genes, as exclusively viable hyphae or yeast-locked mutant cells expressing hyphae-associated genes stimulated 5-LOX by [Ca2+ ]i mobilization and p38 MAPK activation. LTB4 biosynthesis was orchestrated by synergistic activation of dectin-1 and Toll-like receptor 2, and corresponding signaling via SYK and MYD88, respectively. Conclusively, we report hyphae-specific induction of LTB4 biosynthesis in human neutrophils. This highlights an expanding role of neutrophils during inflammatory processes in the response to C. albicans infections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。