Chemical crosslinking and ligation methods for in vivo analysis of RNA structures and interactions

用于体内分析 RNA 结构和相互作用的化学交联和连接方法

阅读:6
作者:Wilson H Lee, Kongpan Li, Zhipeng Lu

Abstract

RNA structures and interactions in living cells drive a variety of biological processes and play critical roles in physiology and disease states. However, studies of RNA structures and interactions have been challenging due to limitations in available technologies. Direct determination of structures in vitro has been only possible to a small number of RNAs with limited sizes and conformations. We recently introduced two chemical crosslink-ligation techniques that enabled studies of transcriptome-wide secondary and tertiary structures and their dynamics. In a dramatically improved version of the psoralen analysis of RNA interactions and structures (PARIS2) method, we detailed the synthesis and use of amotosalen, a highly soluble psoralen analogue, and enhanced enzymology for higher efficiency duplex capture. We also introduced spatial 2'-hydroxyl acylation reversible crosslinking (SHARC) with exonuclease (exo) trimming, a method which utilizes a novel crosslinker class that targets the 2'-OH to capture three-dimensional (3D) structures. Both are powerful orthogonal approaches for solving in vivo RNA structure and interactions, integrating crosslinking, exo trimming, proximity ligation, and high throughput sequencing. In this chapter, we present a detailed protocol for the methods and highlight steps that outperform existing crosslink-ligation approaches.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。