Deciphering of Candida parapsilosis induced immune response in Drosophila melanogaster

解读近平滑念珠菌在果蝇中诱导的免疫反应

阅读:7
作者:Katalin Csonka, Zsolt Tasi, Viktor Vedelek, Csaba Vágvölgyi, Rita Sinka, Attila Gácser

Abstract

Candida infections are the most prevalent cause of serious human mycoses and are the third most common pathogens isolated from bloodstream infections in hospitalized patients. C. parapsilosis is a member of the non-albicans spp., which have a predilection for causing life-threatening disease in neonates and hospitalized pediatric patients. In this study, we utilized a Drosophila melanogaster infection model to analyze the immunological responses to C. parapsilosis. Our results demonstrate that the Toll pathway in Drosophila controls C. parapsilosis proliferation as the Toll signaling mutant MyD88-/- flies are highly susceptible to C. parapsilosis. We also confirmed that the MyD88-/- fly is a convenient invertebrate animal model to analyze virulence properties of different species and strains from the C. parapsilosis sensu lato complex as C. orthopsilosis, C. metapsilosis proved to be less virulent than C. parapsilosis sensu stricto and the N-mannan deficient C. parapsilosis och1Δ/Δ strain showed attenuated pathogenicity in this immunodeficient Drosophila background. We also found that Persephone protease is not required for detection and activation of Toll pathway during C. parapsilosis infection. Furthermore, we observed that Drosophila β-glucan receptor deficient flies where more sensitive to C. parapsilosis compared to wild-type flies; however, we could not find a clear dependence on the recognition of this receptor and the cell wall β-glucan exposure-induced host response. These studies establish this D. melanogaster infection model as an efficient tool in deciphering immune responses to C. parapsilosis as well as for assessing virulence factors produced by this emerging fungal predator.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。