NRF2 Loss Accentuates Parkinsonian Pathology and Behavioral Dysfunction in Human α-Synuclein Overexpressing Mice

NRF2 缺失加剧人类 α-突触核蛋白过表达小鼠的帕金森病病理和行为功能障碍

阅读:7
作者:Annadurai Anandhan, Nhat Nguyen, Arjun Syal, Luke A Dreher, Matthew Dodson, Donna D Zhang, Lalitha Madhavan

Abstract

Nuclear factor (erythroid-derived 2)-like 2 (NRF2) is a central regulator of cellular stress responses and its transcriptional activation promotes multiple cellular defense and survival mechanisms. The loss of NRF2 has been shown to increase oxidative and proteotoxic stress, two key pathological features of neurodegenerative disorders such as Parkinson's disease (PD). Moreover, compromised redox homeostasis and protein quality control can cause the accumulation of pathogenic proteins, including alpha-synuclein (α-Syn) which plays a key role in PD. However, despite this link, the precise mechanisms by which NRF2 may regulate PD pathology is not clear. In this study, we generated a humanized mouse model to study the importance of NRF2 in the context of α-Syn-driven neuropathology in PD. Specifically, we developed NRF2 knockout and wild-type mice that overexpress human α-Syn (hα-Syn+/Nrf2-/- and hα-Syn+/Nrf2+/+ respectively) and tested changes in their behavior through nest building, challenging beam, and open field tests at three months of age. Cellular and molecular alterations in α-Syn, including phosphorylation and subsequent oligomerization, as well as changes in oxidative stress, inflammation, and autophagy were also assessed across multiple brain regions. It was observed that although monomeric α-Syn levels did not change, compared to their wild-type counterparts, hα-Syn+/Nrf2-/- mice exhibited increased phosphorylation and oligomerization of α-Syn. This was associated with a loss of tyrosine hydroxylase expressing dopaminergic neurons in the substantia nigra, and more pronounced behavioral deficits reminiscent of early-stage PD, in the hα-Syn+/Nrf2-/- mice. Furthermore, hα-Syn+/Nrf2-/- mice showed significantly amplified oxidative stress, greater expression of inflammatory markers, and signs of increased autophagic burden, especially in the midbrain, striatum and cortical brain regions. These results support an important role for NRF2, early in PD progression. More broadly, it indicates NRF2 biology as fundamental to PD pathogenesis and suggests that targeting NRF2 activation may delay the onset and progression of PD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。