RNA-seq transcriptomic analysis of 4-octyl itaconate repressing myogenic differentiation

4-辛基衣康酸酯抑制肌源性分化的 RNA-seq 转录组分析

阅读:6
作者:Lili Wang, Zheng Chen, Yu Feng, Rongrong Wang, Xiaohui Bai, Weihua Liu, Dawei Wang

Background

The 4-octyl itaconate (OI) is a type of cell-permeable itaconate derivative. Studies have shown that with an anti-fibrotic effect in systemic sclerosis, the OI also affects osteoclast differentiation. The

Conclusions

Our study broadens the understanding of the OI inhibition of myogenic differentiation. OI plays its functions by targeting multiple molecules and pathways, providing novel insights into the understanding of the overall effect of OI.

Methods

Myoblast proliferation, differentiation, and muscle regulatory factors were examined in C2C12 myoblasts treated with OI of various concentrations (2.5, 10, 25, 50, and 100 μmol/L). Cells were treated with the PI3K-Akt activator IGF-1 to explore the role of the PI3K-Akt pathway in OI inhibition of myogenic differentiation. The regulatory mechanisms of OI in myogenesis were further investigated by RNA-seq and subsequent gene ontology (GO), kyoto encyclopedia of genes and genomes (KEGG) and, gene set enrichment analysis (GSEA).

Results

OI of various concentrations did not show any effect during cell proliferation. During differentiation, OI inhibited the expressions of the marker of mature myotubes myosin heavy chain (MHC) and myogenin in a dose-dependent manner. OI inhibited muscle differentiation by affecting MyoD-regulated activity through inhibition of AKT1 phosphorylation. The results of the KEGG enrichment analysis and GSEA showed that OI affected multiple metabolic pathways during myogenic differentiation, including PI3K-Akt signaling, calcium signaling, and PPAR signaling. Conclusions: Our study broadens the understanding of the OI inhibition of myogenic differentiation. OI plays its functions by targeting multiple molecules and pathways, providing novel insights into the understanding of the overall effect of OI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。