Poly(lactide-co-glycolide) microspheres for MRI-monitored transcatheter delivery of sorafenib to liver tumors

聚(丙交酯-共-乙醇酸)微球用于 MRI 监控下经导管输送索拉非尼至肝肿瘤

阅读:8
作者:Jeane Chen, Alexander Y Sheu, Weiguo Li, Zhuoli Zhang, Dong-Hyun Kim, Robert J Lewandowski, Reed A Omary, Lonnie D Shea, Andrew C Larson

Abstract

The multi-kinase inhibitor (MKI) sorafenib can be an effective palliative therapy for patients with hepatocellular carcinoma (HCC). However, patient tolerance is often poor due to common systemic side effects following oral administration. Local transcatheter delivery of sorafenib to liver tumors has the potential to reduce systemic toxicities while increasing the dose delivered to targeted tumors. We developed sorafenib-eluting PLG microspheres for delivery by intra-hepatic transcatheter infusion in an orthotropic rodent HCC model. The particles also encapsulated iron-oxide nanoparticles permitting magnetic resonance imaging (MRI) of intra-hepatic biodistributions. The PLG microspheres (diameter≈1μm) were loaded with 18.6% (w/w) sorafenib and 0.54% (w/w) ferrofluid and 65.2% of the sorafenib was released within 72h of media exposure. In vitro studies demonstrated significant reductions in HCC cell proliferation with increasing doses of the sorafenib-eluting microspheres, where the estimated IC50 was a 29μg/mL dose of microspheres. During in vivo studies, MRI permitted intra-procedural visualization of intra-hepatic microsphere delivery. At 72h after microsphere infusion, microvessel density was significantly reduced in tumors treated with the sorafenib-eluting microspheres compared to both sham control tumors (by 35%) and controls (by 30%). These PLG microspheres offer the potential to increase the efficacy of molecularly targeted MKI therapies while reducing systemic exposures via selective catheter-directed delivery to HCC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。