Ladder-like Poly(methacryloxypropyl) silsesquioxane-Al2O3-polybutadiene Flexible Nanocomposites with High Thermal Conductivity

具有高导热性的梯形聚(甲基丙烯酰氧基丙基)倍半硅氧烷-Al2O3-聚丁二烯柔性纳米复合材料

阅读:5
作者:Pietro Mingarelli, Chiara Romeo, Emanuela Callone, Giulia Fredi, Andrea Dorigato, Massimiliano D'Arienzo, Francesco Parrino, Sandra Dirè

Abstract

Ladder-like poly(methacryloxypropyl)-silsesquioxanes (LPMASQ) are photocurable Si-based gels characterized by a double-stranded structure that ensures superior thermal stability and mechanical properties than common organic polymers. In this work, these attractive features were exploited to produce, in combination with alumina nanoparticles (NPs), both unmodified and functionalized with methacryloxypropyl-trimethoxysilane (MPTMS), LPMASQ/Al2O3 composites displaying remarkable thermal conductivity. Additionally, we combined LPMASQ with polybutadiene (PB) to produce hybrid nanocomposites with the addition of functionalized Al2O3 NPs. The materials underwent thermal stability, structural, and morphological evaluations via thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDXS), Fourier transform infrared spectroscopy (FTIR), and solid-state nuclear magnetic resonance (NMR). Both blending PB with LPMASQ and surface functionalization of nanoparticles proved to be effective strategies for incorporating a higher ceramic filler amount in the matrices, resulting in significant increases in thermal conductivity. Specifically, a 113.6% increase in comparison to the bare matrix was achieved at relatively low filler content (11.2 vol%) in the presence of 40 wt% LPMASQ. Results highlight the potential of ladder-like silsesquioxanes in the field of thermally conductive polymers and their applications in heat dissipation for flexible electronic devices.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。