A DNA Methylation-Based Test for Breast Cancer Detection in Circulating Cell-Free DNA

基于 DNA 甲基化的循环游离 DNA 乳腺癌检测方法

阅读:4
作者:Sofia Salta, Sandra P Nunes, Mário Fontes-Sousa, Paula Lopes, Micaela Freitas, Margarida Caldas, Luís Antunes, Fernando Castro, Pedro Antunes, Susana Palma de Sousa, Rui Henrique, Carmen Jerónimo

Background

Breast cancer (BrC) is the most frequent neoplasm in women. New biomarkers, including aberrant DNA methylation, may improve BrC management. Herein, we evaluated the detection and prognostic performance of seven genes' promoter methylation (APC, BRCA1, CCND2, FOXA1, PSAT1, RASSF1A and SCGB3A1).

Conclusions

This approach enables BrC accurate diagnosis and prognostic stratification in tissue samples, and allows for early detection in liquid biopsies, thus suggesting a putative value for patient management.

Methods

Methylation levels were assessed in primary BrC tissues by quantitative methylation-specific polymerase chain reaction (QMSP) and in circulating cell-free DNA (ccfDNA) by multiplex QMSP from two independent cohorts of patients (Cohort #1, n = 137; and Cohort #2, n = 44). Receiver operating characteristic (ROC) curves were constructed, and log-rank test and Cox regression were performed to assess the prognostic value of genes' methylation levels.

Results

The gene-panel APC, FOXA1, RASSF1A, SCGB3A1 discriminated normal from cancerous tissue with high accuracy (95.55%). In multivariable analysis, high PSAT1-methylation levels [>percentile 75 (P75)] associated with longer disease-free survival, whereas higher FOXA1-methylation levels (>P75) associated with shorter disease-specific survival. The best performing panel in ccfDNA (APC, FOXA1 and RASSF1A) disclosed a sensitivity, specificity and accuracy over 70%. Conclusions: This approach enables BrC accurate diagnosis and prognostic stratification in tissue samples, and allows for early detection in liquid biopsies, thus suggesting a putative value for patient management.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。